PIRAMID

A Quantitative Risk-based Approach to Integrity Maintenance Planning and Design Optimization for Offshore Pipelines

Mark Stephens C-FER Technologies Inc. Edmonton, Canada

Background to the PIRAMID Project

A Multi-year Joint Industry Program

Sponsors

- BC Gas Utility
- Enbridge Inc. (Interprovincial)
- Foothills Pipe Lines
- Kinder Morgan (KN Energy)
- Southern California Gas
- TransCanada Pipelines
- Gas Research Institute
- Canadian Geological Survey
- U.S. Minerals Management Service

Program Goal

Develop Models and Software to:

- Make optimal maintenance decisions
 - Ensure acceptable risk levels
 - At the lowest possible cost
- Explain rationale behind decisions
 - Internally within company
 - Externally to regulators and the public

Issues To Be Addressed

- What is the operating risk associated with the pipeline in its present state
- What effect would each candidate maintenance strategy have on the operating risk
- What is the lowest cost maintenance option that meets acceptable safety & environmental constraints

PIRAMID Functions

Risk Ranking

For each Segment in System

Maintenance Optimization

For each Targeted Segment

PIRAMID Features

- Quantitative approach
- Extensive use of engineering models
- Calculates total risk
 - financial
 - safety
 - environmental
- Validated by real pipeline data

Probability Estimation Approaches

General

Adjusted historical failure rate method

Structural reliability method

Adjusted Historical Failure Rate Method

Baseline Failure Rates by Cause

Failure Rates by Mode

Failure Cause	Mode Factor		
	small leak	large leak	rupture
Metal Loss Corrosion	???	???	???
Mechanical Damage	???	???	???
Ground Movement	???	???	???
Cracks	???	???	???
Other Causes	???	???	???

Probability Adjustment Factors

E.g. - for External Corrosion

$$AF = f(A,t,T)F_{SC}F_{CP}F_{CT}F_{CC}$$
Adjustment factor

Coating condition factor

Coating type factor

Cathodic protection factor

Operating temperature

Soil corrosivity factor

Adjusted Failure Rates - Summary

- Simple models utilizing
 - Statistical data
 - Engineering analysis
 - Judgment
- Suitable for segment ranking

Structural Reliability Approach

Application to External Corrosion

Failure rate / km = No. Defects per km x Failure probability per defect

Failure Probability per Defect

Probability of Failure Versus Time

Effect of Maintenance

Mitigation philosophy

Find and eliminate defects before they reach critical size

Maintenance options

- Inspection and repair
- Hydro-testing

Maintenance impact

- Reduce number of defects per unit line length
- Shift defect size distribution toward smaller values

Quantifying Effect of Maintenance

technology creates advantage

Modified Defect Size Distributions

Effect on Probability

Application to Mechanical Damage

Failure probability = (No. line hits) \times (Failure probability per hit)

Probability of Failure Given Hit

Frequency of Line Hits

Fault Tree Model (inductive logic)

Effect of Maintenance

Mitigation philosophy

Prevent potential line hits

Example prevention options

- Enhance awareness of pipeline location
- Modify cover depth inspection frequency
- Increase pipeline burial depth
- Introduce mechanical protection

Prevention Impact

- Modify fault tree basic event probabilities
- Reduce hit probability

Effect on Failure Probability

Structural Reliability Approach - Summary

- Calculate failure probability from
 - Structural behaviour models
 - Line and ROW information
 - Defect information (corrosion / SCC/ cracks / dent-gouges)
 - External forces (ground movement / mechanical damage)
- Suitable for maintenance optimization

Consequence Estimation Approach

Consequence measures

<u>Category</u> <u>Measure</u>

Financial impact → Dollars

Public safety impact → Number of people at risk

Environmental impact -> Effective residual spill volume

Consequences of Pipeline Failure

Consequence Analysis

Consequences of Acute Release Hazards

Step 1 - Use event tree analysis (logic model) to estimate relative likelihood of all conceivable release hazards

Consequence Analysis

Consequence of Acute Release Hazards

Step 2 - Use hazard characterization models to estimate size of affected areas

Step 3 - Estimate offshore damage cost

(no. involved structures & vessels x property value)

Estimate number of people at risk

(no. involved structures & vessels x crew size)

C-FER Technologies Inc.

Consequence Analysis

Long-term Consequences of Product Release Hazard

Step 4 - Assess clean-up costs
Estimate degree of natural resource damage

Spill Trajectory Model

Trajectory Analysis Results

Shoreline

Panuch Zone Tanuch Zone Tanuch

Spill Trajectory Analysis

Software

PIRAMID Structure

Segment Ranking Chart

Segment Ranking Table

Risk Variations Along a Segment

Failure Rate Versus Time

Decision Analysis - Utility Chart

Summary

- Comprehensive user-friendly approach for risk-based integrity maintenance planning
- Quantitative and objective methodology
 - Historical incident data
 - Analytical models for
 - pipeline failure prediction
 - release hazard characterization
 - Pipeline condition data
- Benefits
 - Generates line-specific risk estimates
 - Quantifies the impact of maintenance actions
 - Identifies minimum cost solutions

